Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.592
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612489

RESUMO

The gut-brain axis is increasingly understood to play a role in neuropsychiatric disorders. The probiotic bacterium Lactobacillus (L.) reuteri and products of tryptophan degradation, specifically the neuroactive kynurenine pathway (KP) metabolite kynurenic acid (KYNA), have received special attention in this context. We, therefore, assessed relevant features of KP metabolism, namely, the cellular uptake of the pivotal metabolite kynurenine and its conversion to its primary products KYNA, 3-hydroxykynurenine and anthranilic acid in L. reuteri by incubating the bacteria in Hank's Balanced Salt solution in vitro. Kynurenine readily entered the bacterial cells and was preferentially converted to KYNA, which was promptly released into the extracellular milieu. De novo production of KYNA increased linearly with increasing concentrations of kynurenine (up to 1 mM) and bacteria (107 to 109 CFU/mL) and with incubation time (1-3 h). KYNA neosynthesis was blocked by two selective inhibitors of mammalian kynurenine aminotransferase II (PF-048559989 and BFF-122). In contrast to mammals, however, kynurenine uptake was not influenced by other substrates of the mammalian large neutral amino acid transporter, and KYNA production was not affected by the presumed competitive enzyme substrates (glutamine and α-aminoadipate). Taken together, these results reveal substantive qualitative differences between bacterial and mammalian KP metabolism.


Assuntos
Limosilactobacillus reuteri , Probióticos , Animais , Cinurenina , Ácido Cinurênico , Aminoácidos , Mamíferos
2.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612652

RESUMO

Systemic sclerosis (SSc), a predominantly female-affected systemic autoimmune disease, requires tailored treatment strategies contingent on organ involvement and symptom severity. Given SSc's inflammatory nature, the involvement of the kynurenine pathway (KP) in its pathophysiology is underexplored. Our study aimed to investigate sex-related differences in KP activation among SSc patients and assess the impact of angiotensin-converting enzyme (ACE) inhibitors and estimated glomerular filtration rate (eGFR) on KP metabolite concentrations. We enrolled 48 SSc patients and 53 healthy controls, quantifying KP metabolites (tryptophan (TRP), kynurenine (KYN), and kynurenic acid (KYNA)) in serum via high-performance liquid chromatography. Separate multivariate analyses of covariance (MANCOVAs) for women and men were performed to ascertain mean differences between patients and healthy controls while correcting for age. For our secondary objective, we conducted a MANCOVA to explore disparities in ACE inhibitor users and non-users among patients, with BMI correction. Our findings revealed decreased TRP concentrations but increased KYNA/TRP ratio and KYN/TRP ratio in both male and female SSc patients compared to their respective controls. Unlike women, SSc males exhibited higher KYN concentrations and decreased KYNA/KYN ratio relative to their controls. Additionally, SSc patients using ACE inhibitors had higher serum KYNA levels than non-users. Notably, we established a significant correlation between eGFR and KYNA in SSc patients. These results indicate differential KP activation in male and female SSc patients, with males demonstrating heightened KP activation. While ACE inhibitors may influence the KP in SSc patients, further research is necessary to comprehensively understand their impact on symptoms and prognosis in the context of these KP alterations.


Assuntos
Cinurenina , Escleroderma Sistêmico , Humanos , Feminino , Masculino , Triptofano , Inibidores da Enzima Conversora de Angiotensina , Antivirais , Ácido Cinurênico
3.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542368

RESUMO

The central nervous system (CNS) is the final frontier in drug delivery because of the blood-brain barrier (BBB), which poses significant barriers to the access of most drugs to their targets. Kynurenic acid (KYNA), a tryptophan (Trp) metabolite, plays an important role in behavioral functions, and abnormal KYNA levels have been observed in neuropsychiatric conditions. The current challenge lies in delivering KYNA to the CNS owing to its polar side chain. Recently, C-3 side chain-modified KYNA analogs have been shown to cross the BBB; however, it is unclear whether they retain the biological functions of the parent molecule. This study examined the impact of KYNA analogs, specifically, SZR-72, SZR-104, and the newly developed SZRG-21, on behavior. The analogs were administered intracerebroventricularly (i.c.v.), and their effects on the motor domain were compared with those of KYNA. Specifically, open-field (OF) and rotarod (RR) tests were employed to assess motor activity and skills. SZR-104 increased horizontal exploratory activity in the OF test at a dose of 0.04 µmol/4 µL, while SZR-72 decreased vertical activity at doses of 0.04 and 0.1 µmol/4 µL. In the RR test, however, neither KYNA nor its analogs showed any significant differences in motor skills at either dose. Side chain modification affects affective motor performance and exploratory behavior, as the results show for the first time. In this study, we showed that KYNA analogs alter emotional components such as motor-associated curiosity and emotions. Consequently, drug design necessitates the development of precise strategies to traverse the BBB while paying close attention to modifications in their effects on behavior.


Assuntos
Ácido Cinurênico , Fármacos Neuroprotetores , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Fármacos Neuroprotetores/química , Teste de Campo Aberto
4.
Pharmacol Rep ; 76(2): 348-367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519733

RESUMO

BACKGROUND: The study aimed to assess the influence of a single valproate (VPA) administration on inhibitory and excitatory neurotransmitter concentrations in the brain structures involved in epileptogenesis in pentylenetetrazol (PTZ)-kindled rats. METHODS: Adult, male Wistar rats were kindled by repeated intraperitoneal (ip) injections of PTZ at a subconvulsive dose (30 mg/kg, three times a week). Due to the different times required to kindle the rats (18-22 injections of PTZ), a booster dose of PTZ was administrated 7 days after the last rats were kindled. Then rats were divided into two groups: acute administration of VPA (400 mg/kg) or saline given ip. The concentration of amino acids, kynurenic acid (KYNA), monoamines, and their metabolites in the prefrontal cortex, hippocampus, amygdala, and striatum was assessed by high-pressure liquid chromatography (HPLC). RESULTS: It was found that a single administration of VPA increased the gamma-aminobutyric acid (GABA), tryptophan (TRP), 5-hydroxyindoleacetic acid (5-HIAA), and KYNA concentrations and decreased aspartate (ASP) levels in PTZ-kindled rats in the prefrontal cortex, hippocampus, amygdala and striatum. CONCLUSIONS: Our results indicate that a single administration of VPA in the PTZ-kindled rats restored proper balance between excitatory (decreasing the level of ASP) and inhibitory neurotransmission (increased concentration GABA, KYNA) and affecting serotoninergic neurotransmission in the prefrontal cortex, hippocampus, amygdala, and striatum.


Assuntos
Aminoácidos , Excitação Neurológica , Ratos , Masculino , Animais , Aminoácidos/farmacologia , Pentilenotetrazol/farmacologia , Ácido Valproico/farmacologia , Ácido Cinurênico/metabolismo , Ratos Wistar , Encéfalo/metabolismo , Excitação Neurológica/metabolismo , Aminas/metabolismo , Ácido gama-Aminobutírico/metabolismo
5.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(4): 354-363, 2024 Apr 09.
Artigo em Chinês | MEDLINE | ID: mdl-38548592

RESUMO

Objective: To study the effects of periodontitis on bone and tryptophan metabolism of gut microbiota in the context of estrogen deficiency. Methods: Thirty-two female C57BL6/J mice were randomly divided into four groups based on table of random numbers (n=8 in each group): Sham group, in which mice were given sham surgery; Sham_Lig group, in which mice were given sham surgery and were induced to periodontitis by ligating the bilateral maxillary second molars with 5-0 silk threads at the fourth week; Ovx group, in which mice were given bilateral ovariectomy; Ovx_Lig group, in which mice were given bilateral ovariectomy and were induced to periodontitis at the fourth week. After 8 weeks of ligation, the mice of 4 groups were euthanized for collecting the samples of femur, tibia, mandible and skull. Those samples were scanned by micro-CT to measure the bone mineral density (BMD), bone volume versus total volume ratio (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th) and trabecular spacing (Tb.Sp). The cecum contents of 4 groups of mice were collected for gut microbiota 16S rRNA gene sequencing. The tryptophan and its metabolites in intestinal tracts were detected by liquid chromatography-mass spectrometry. Pearson correlation analysis was performed to analyze the correlation between the abundance of gut microbiota and the content of tryptophan and its metabolites. Results: Femur BMD [(82.23±3.97) mg/cm3], BV/TV [(9.25±1.37)%] and Tb.Th [(70.95±5.70) µm] in Ovx_Lig group were significantly lower than Ovx group [(96.30±3.76) mg/cm3 (P=0.004); (14.45±1.55)% (P=0.022) and (87.58±8.02) µm (P<0.001), respectively]. The ß-diversity analysis of gut microbiota based on Bray-Curtis distance showed that samples of Ovx_Lig group and Ovx group were obviously grouped. Linear discriminant analysis effect size (LEfSe) showed that Alistipes was the representative genus in Ovx_Lig group. The relative abundance of Alistipes in Ovx_Lig group [(0.42±0.14)%] were significantly higher than that in Ovx group [(0.17±0.05)%] (t=4.45, P<0.001). Tryptophan metabolism analysis showed that the content of kynurenic acid [(531.12±158.60) ng/g] in Ovx_Lig group were significantly higher than that in Ovx group [(400.42±57.96) ng/g] (t=2.19, P=0.046). And the content of indole-3-carbaldehyde [(383.37±144.06) ng/g] in Ovx_Lig group were significantly lower than Ovx group [(701.72±141.93) ng/g] (t=4.45, P<0.001). Correlation analysis showed that relative abundance of Alistipes was positively correlated with kynurenic acid (r=0.32, P=0.088), while negatively correlated with indole-3-carbaldehyde (r=-0.32, P=0.088). Conclusions: Periodontitis can induce bone destruction of femur in estrogen-deficient mice, the mechanism of which may be related to Alistipes in gut and the tryptophan metabolites kynurenic acid and indole-3-carbaldehyde.


Assuntos
Microbioma Gastrointestinal , Osteoporose , Periodontite , Camundongos , Animais , Feminino , Humanos , Triptofano , RNA Ribossômico 16S , Ácido Cinurênico/farmacologia , Densidade Óssea , Estrogênios/farmacologia , Ovariectomia
6.
Sci Rep ; 14(1): 6851, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514790

RESUMO

The kynurenine pathway (KP) of tryptophan degradation includes several compounds that reveal immunomodulatory properties. The present study aimed to investigate the alteration in KP metabolites in young women with autoimmune thyroiditis (AIT) and their associations with thyroid function. The thyroid function tests, antithyroid antibodies measurement and ultrasonography of the thyroid gland have been performed in 57 young women with AIT and 38 age-matched healthy controls. The serum levels of tryptophan, kynurenine (KYN) and its metabolites were determined, and the activity of KP enzymes was calculated indirectly as product-to-substrate ratios. KP was activated and dysregulated in AIT, along with significantly elevated levels of KYN and anthranilic acid (AA), at the expense of the reduction of kynurenic acid (KYNA), which was reflected by the increase in the AA/KYNA ratio (p < 0.001). In univariate and multiple regression analyses, peripheral deiodinase (SPINA-GD) activity in AIT was positively associated with KYNA, AA, and quinolinic acid (QA). The merger of AA, AA/KYNA ratio, QA and SPINA-GD exhibited the highest sensitivity and specificity to predict AIT (p < 0.001) in receiver operating characteristic (ROC) analysis. In conclusion, the serum KYN metabolite profile is dysregulated in young women with AIT and could serve as a new predictor of AIT risk.


Assuntos
Cinurenina , Tireoidite Autoimune , Humanos , Feminino , Cinurenina/metabolismo , Triptofano/metabolismo , Ácido Quinolínico , Ácido Cinurênico/metabolismo
7.
Neurochem Res ; 49(5): 1200-1211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38381245

RESUMO

Cognitive dysfunctions are now recognized as core symptoms of various psychiatric disorders e.g., major depressive disorder. Sustained immune activation may leads to cognitive dysfunctions. Proinflammatory cytokines shunt the metabolism of tryptophan towards kynurenine and quinolinic acid may accumulate at toxic concentrations. This acid triggers an increase in neuronal nitric oxide synthase function and promotes oxidative stress. The searching for small molecules that can regulate tryptophan metabolites produced in the kynurenic pathway has become an important goal in developing treatments for various central nervous system diseases with an inflammatory component. Previously we have identified a small hybrid molecule - MM165 which significantly reduces depressive-like symptoms caused by inflammation induced by lipopolysaccharide administration. In the present study, we investigated whether this compound would mitigate cognitive deficits induced by lipopolysaccharide administration and whether treatment with it would affect the plasma or brain levels of quinolinic acid and kynurenic acid. Neuroinflammation was induced in rats by administering lipopolysaccharide at a dose of 0.5 mg/kg body weight for 10 days. We conducted two tests: novel object recognition and object location, to assess the effect on memory impairment in animals previously treated with lipopolysaccharide. In plasma collected from rats, the concentrations of C-reactive protein and tumor necrosis factor alfa were determined. The concentrations of kynurenic acid and quinolinic acid were determined in plasma and homogenates obtained from the cerebral cortex of rats. Interleukin 6 in the cerebral cortex of rats was determined. Additionally, the body and spleen mass and spontaneous activity were measured in rats. Our study shows that MM165 may mitigate cognitive deficits induced by inflammation after administration of lipopolysaccharide and alter the concentrations of tryptophan metabolites in the brain. Compounds exhibiting a mechanism of action analogous to that of MM165 may serve as foundational structures for the development of a new class of antidepressants.


Assuntos
Transtorno Depressivo Maior , Cinurenina , Humanos , Ratos , Animais , Cinurenina/metabolismo , Triptofano/metabolismo , Lipopolissacarídeos/toxicidade , Ácido Cinurênico/metabolismo , Ácido Quinolínico/toxicidade , Ácido Quinolínico/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico
8.
Psychoneuroendocrinology ; 163: 106981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38335827

RESUMO

INTRODUCTION: Colorectal cancer (CRC) survivors often experience neuropsychological symptoms, including anxiety and depression. Mounting evidence suggests a role for the kynurenine pathway in these symptoms due to potential neuroprotective and neurotoxic roles of involved metabolites. However, evidence remains inconclusive and insufficient in cancer survivors. Thus, we aimed to explore longitudinal associations of plasma tryptophan, kynurenines, and their established ratios with anxiety and depression in CRC survivors up to 12 months post-treatment. METHODS: In 249 stage I-III CRC survivors, blood samples were collected at 6 weeks, 6 months, and 12 months post-treatment to analyze plasma concentrations of tryptophan and kynurenines using liquid-chromatography tandem-mass spectrometry (LC/MS-MS). At the same timepoints, anxiety and depression were assessed using the Hospital Anxiety and Depression Scale (HADS). Confounder-adjusted linear mixed models were used to analyze longitudinal associations. Sensitivity analyses with false discovery rate (FDR) correction were conducted to adjust for multiple testing. RESULTS: Higher plasma tryptophan concentrations were associated with lower depression scores (ß as change in depression score per 1 SD increase in the ln-transformed kynurenine concentration: -0.31; 95%CI: -0.56,-0.05), and higher plasma 3-hydroxyanthranilic acid concentrations with lower anxiety scores (-0.26; -0.52,-0.01). A higher 3-hydroxykynurenine ratio (HKr; the ratio of 3-hydroxykynurenine to the sum of kynurenic acid, xanthurenic acid, anthranilic acid, and 3-hydroxyanthranilic acid) was associated with higher depression scores (0.34; 0.04,0.63) and higher total anxiety and depression scores (0.53; 0.02,1.04). Overall associations appeared to be mainly driven by inter-individual associations, which were statistically significant for tryptophan with depression (-0.60; -1.12,-0.09), xanthurenic acid with total anxiety and depression (-1.04; -1.99,-0.10), anxiety (-0.51; -1.01,-0.01), and depression (-0.56; -1.08,-0.05), and kynurenic-acid-to-quinolinic-acid ratio with depression (-0.47; -0.93,-0.01). In sensitivity analyses, associations did not remain statistically significant after FDR adjustment. CONCLUSION: We observed that plasma concentrations of tryptophan, 3-hydroxyanthranilic acid, xanthurenic acid, 3-hydroxykynurenine ratio, and kynurenic-acid-to-quinolinic-acid ratio tended to be longitudinally associated with anxiety and depression in CRC survivors up to 12 months post-treatment. Future studies are warranted to further elucidate the association of plasma kynurenines with anxiety and depression.


Assuntos
Sobreviventes de Câncer , Neoplasias , Humanos , Cinurenina/metabolismo , Triptofano/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Depressão , Biomarcadores , Ácido Cinurênico , Ansiedade
9.
Hum Mol Genet ; 33(7): 594-611, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38181046

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal degenerative muscle wasting disease caused by the loss of the structural protein dystrophin with secondary pathological manifestations including metabolic dysfunction, mood and behavioral disorders. In the mildly affected mdx mouse model of DMD, brief scruff stress causes inactivity, while more severe subordination stress results in lethality. Here, we investigated the kynurenine pathway of tryptophan degradation and the nicotinamide adenine dinucleotide (NAD+) metabolic pathway in mdx mice and their involvement as possible mediators of mdx stress-related pathology. We identified downregulation of the kynurenic acid shunt, a neuroprotective branch of the kynurenine pathway, in mdx skeletal muscle associated with attenuated peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) transcriptional regulatory activity. Restoring the kynurenic acid shunt by skeletal muscle-specific PGC-1α overexpression in mdx mice did not prevent scruff -induced inactivity, nor did abrogating extrahepatic kynurenine pathway activity by genetic deletion of the pathway rate-limiting enzyme, indoleamine oxygenase 1. We further show that reduced NAD+ production in mdx skeletal muscle after subordination stress exposure corresponded with elevated levels of NAD+ catabolites produced by ectoenzyme cluster of differentiation 38 (CD38) that have been implicated in lethal mdx response to pharmacological ß-adrenergic receptor agonism. However, genetic CD38 ablation did not prevent mdx scruff-induced inactivity. Our data do not support a direct contribution by the kynurenine pathway or CD38 metabolic dysfunction to the exaggerated stress response of mdx mice.


Assuntos
ADP-Ribosil Ciclase 1 , Indolamina-Pirrol 2,3,-Dioxigenase , Glicoproteínas de Membrana , Distrofia Muscular de Duchenne , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Animais , Camundongos , Modelos Animais de Doenças , Ácido Cinurênico/metabolismo , Cinurenina/metabolismo , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/patologia , NAD/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Glicoproteínas de Membrana/metabolismo , ADP-Ribosil Ciclase 1/metabolismo
10.
J Headache Pain ; 25(1): 2, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38177986

RESUMO

BACKGROUND: The pathogenesis of pediatric migraine remains unclear and presents challenges in diagnosis. Recently, growing evidence has indicated that the gut microbiota can exert modulatory functions at the gut-brain axis by directly or indirectly regulating tryptophan metabolism. Consequently, we aimed to elucidate the potential association among gut microbiota, tryptophan metabolism, and pediatric migraine while also identifying diagnostic biomarkers for pediatric migraine. METHODS: The gut microbiota composition of 33 migraine children and 42 healthy children, aged less than ten years, from the GMrepo database, was analyzed using the Shannon index, Simpson index, principal coordinates analysis, and Wilcoxon rank-sum test. Microbial diagnostic biomarkers were identified using linear discriminant analysis effect size, ridge regression, and random forest. Plasma concentrations of tryptophan metabolites investigated by enzyme-linked immunosorbent assay were compared between 51 migraine children and 120 healthy children, aged less than eighteen years, using t tests and analysis of variance. The receiver operating characteristic curve was performed to evaluate the diagnostic value of microbial and metabolite biomarkers in pediatric migraine. RESULTS: Differences in the composition of gut microbiota, notably the genera that regulate tryptophan metabolism, were observed in pediatric migraine children. Further investigations revealed a significant decrease in plasma kynurenic acid levels (p < 0.001) among migraine children, along with a significant increase in serotonin (p < 0.05) and quinolinic acid (p < 0.001). Subsequently, we established the normal reference intervals for plasma concentrations of tryptophan metabolites in children. More importantly, the ratio of kynurenic acid to quinolinic acid (AUC: 0.871, sensitivity: 86.3%, specificity: 83.3%) exhibited excellent diagnostic efficacy for pediatric migraine. CONCLUSION: Our study suggests that the gut microbiota may play an important role in the development of pediatric migraine by regulating tryptophan metabolism. We believe that microbial and metabolite biomarkers are sensitive diagnostic tests for pediatric migraine. TRIAL REGISTRATION: The study was registered at ClinicalTrials.gov (NCT05969990).


Assuntos
Microbioma Gastrointestinal , Transtornos de Enxaqueca , Humanos , Criança , Microbioma Gastrointestinal/fisiologia , Triptofano/metabolismo , Ácido Cinurênico , Ácido Quinolínico , Transtornos de Enxaqueca/diagnóstico , Biomarcadores
11.
Environ Sci Technol ; 58(4): 1842-1853, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38228288

RESUMO

Following its introduction as an alternative to perfluorooctanoic acid, hexafluoropropylene oxide dimer acid (HFPO-DA) has been extensively detected in various environmental matrices. Despite this prevalence, limited information is available regarding its hepatotoxicity biomarkers. In this study, toxicokinetic simulations indicated that under repeated treatment, HFPO-DA in mice serum reached a steady state by the 4th day. To assess its subacute hepatic effects and identify potential biomarkers, mice were administered HFPO-DA orally at doses of 0, 0.1, 0.5, 2.5, 12.5, or 62.5 mg/kg/d for 7 d. Results revealed that the lowest observed adverse effect levels were 0.5 mg/kg/d for hepatomegaly and 2.5 mg/kg/d for hepatic injury. Serum metabolomics analysis identified 34, 58, and 118 differential metabolites in the 0.1, 0.5, and 2.5 mg/kg/d groups, respectively, compared to the control group. Based on weighted gene coexpression network analysis, eight potential hepatotoxicity-related metabolites were identified; among them, kynurenic acid (KA) in mouse serum exhibited the highest correlation with liver injury. Furthermore, liver-targeted metabolomics analysis demonstrated that HFPO-DA exposure induced metabolic migration of the kynurenine pathway from KA to nicotinamide adenine dinucleotide, resulting in the activation of endoplasmic reticulum stress and the nuclear factor kappa-B signaling pathway. Notably, pretreatment with KA significantly attenuated liver injury induced by HFPO-DA exposure in mice, highlighting the pivotal roles of KA in the hepatotoxicity of HFPO-DA.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fluorocarbonos , Propionatos , Masculino , Camundongos , Animais , Ácido Cinurênico , Fluorocarbonos/toxicidade , Biomarcadores
12.
Mol Pharm ; 21(2): 550-563, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38261609

RESUMO

4-Chlorokynurenine (4-Cl-KYN, AV-101) is a prodrug of a NMDA receptor antagonist and is in clinical development for potential CNS indications. We sought to further understand the distribution and metabolism of 4-Cl-KYN, as this information might provide a strategy to enhance the clinical development of this drug. We used excretion studies in rats, in vitro transporter assays, and pharmacogenetic analysis of clinical trial data to determine how 4-Cl-KYN and metabolites are distributed. Our data indicated that a novel acetylated metabolite (N-acetyl-4-Cl-KYN) did not affect the uptake of 4-Cl-KYN across the blood-brain barrier via LAT1. 4-Cl-KYN and its metabolites were found to be renally excreted in rodents. In addition, we found that N-acetyl-4-Cl-KYN inhibited renal and hepatic transporters involved in excretion. Thus, this metabolite has the potential to limit the excretion of a range of compounds. Our pharmacogenetic analysis found that a SNP in N-acetyltransferase 8 (NAT8, rs13538) was linked to levels of N-acetyl-4-Cl-KYN relative to 4-Cl-KYN found in the plasma and that a SNP in SLC7A5 (rs28582913) was associated with the plasma levels of the active metabolite, 7-Cl-KYNA. Thus, we have a pharmacogenetics-based association for plasma drug level that could aid in the drug development of 4-Cl-KYN and have investigated the interaction of a novel metabolite with drug transporters.


Assuntos
Ácido Cinurênico , Fármacos Neuroprotetores , Ratos , Animais , Cinurenina , Analgésicos , Fármacos Neuroprotetores/metabolismo
13.
Drug Discov Ther ; 17(6): 434-439, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38044118

RESUMO

D-Amino acid oxidase (DAO), a D-amino acid metabolizing enzyme, is reportedly associated with the psychiatric disease schizophrenia, suggesting a role for DAO inhibitors in its treatment. We have previously reported that DAO catalyzes the conversion of nonfluorescent 6-methylthio-D-kynurenine (MeS-D-KYN) to fluorescent 5-methylthiokynurenic acid (MeS-KYNA) in vitro. The present study aimed to determine the potential of MeS-D-KYN in evaluating DAO activity in vivo using renal microdialysis technique in rats. Male Sprague-Dawley rats were subjected to linear microdialysis probe implantation in the left kidney. Continuous perfusion of MeS-D-KYN was maintained, and DAO activity in the kidney cortex was evaluated by measuring the MeS-KYNA content in the microdialysate. The microdialysate was collected every 30 min and analyzed by high-performance liquid chromatography with fluorescence detection, monitored at 450 nm with an excitation wavelength of 364 nm. A significant production of MeS-KYNA was observed during, but not before, infusion of MeS-D-KYN, indicating that this compound is not endogenous. MeS-KYNA production was suppressed by the co-infusion of DAO inhibitor, 5-chlorobenzo[d]isoxazol-3-ol (CBIO), suggesting that MeS-D-KYN was converted to MeS-KYNA by renal DAO. Moreover, oral administration of CBIO effectively suppressed DAO activity in a dose-dependent manner. DAO converted MeS-D-KYN to MeS-KYNA in vivo, suggesting the potential of this compound in evaluating DAO activity. The use of the renal microdialysis technique developed in this study facilitates the monitoring of DAO activity in live experimental animals.


Assuntos
Ácido Cinurênico , Cinurenina , Ratos , Masculino , Animais , Cinurenina/química , Cinurenina/farmacologia , Ratos Sprague-Dawley , Microdiálise , Ácido Cinurênico/química , Rim
14.
Neuropsychopharmacology ; 49(3): 584-592, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37735504

RESUMO

Major depressive disorder (MDD) is a serious psychiatric disorder that in extreme cases can lead to suicide. Evidence suggests that alterations in the kynurenine pathway (KP) contribute to the pathology of MDD. Activation of the KP leads to the formation of neuroactive metabolites, including kynurenic acid (KYNA) and quinolinic acid (QUIN). To test for changes in the KP, postmortem anterior cingulate cortex (ACC) was obtained from the National Institute of Health NeuroBioBank. Gene expression of KP enzymes and relevant neuroinflammatory markers were investigated via RT-qPCR (Fluidigm) and KP metabolites were measured using liquid chromatography-mass spectrometry in tissue from individuals with MDD (n = 44) and matched nonpsychiatric controls (n = 36). We report increased IL6 and IL1B mRNA in MDD. Subgroup analysis found that female MDD subjects had significantly decreased KYNA and a trend decrease in the KYNA/QUIN ratio compared to female controls. In addition, MDD subjects that died by suicide had significantly decreased KYNA in comparison to controls and MDD subjects that did not die by suicide, while subjects that did not die by suicide had increased KYAT2 mRNA, which we hypothesise may protect against a decrease in KYNA. Overall, we found sex- and suicide-specific alterations in the KP in the ACC in MDD. This is the first molecular evidence in the brain of subgroup specific changes in the KP in MDD, which not only suggests that treatments aimed at upregulation of the KYNA arm in the brain may be favourable for female MDD sufferers but also might assist managing suicidal behaviour.


Assuntos
Transtorno Depressivo Maior , Suicídio , Humanos , Feminino , Transtorno Depressivo Maior/metabolismo , Cinurenina , Giro do Cíngulo/metabolismo , Depressão , RNA Mensageiro/metabolismo , Ácido Cinurênico/metabolismo , Ácido Quinolínico
15.
Schizophr Res ; 264: 71-80, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101180

RESUMO

Two cardinal elements in the complex and multifaceted pathophysiology of schizophrenia (SCZ) are neuroinflammation and dysregulation of glutamatergic neurotransmission, with the latter being especially involved in treatment-resistant schizophrenia (TRS). Interestingly, the Kynurenine (KYN) pathway (KP) is at the crossroad between them, constituting a potential causal link and a therapeutic target. Although there is preclinical and clinical evidence indicating a dysregulation of KP associated with the clinical phenotype of SCZ, clinical studies investigating the possible relationship between changes in biomarkers of the KP and response to pharmacotherapy are still limited. Therefore, we have studied possible differences in the circulating levels of biomarkers of the metabolism of tryptophan along the KP in 43 responders to first-line treatments (FLR) and 32 TRS patients treated with clozapine, and their possible associations with psychopathology in the two subgroups. Plasma levels of KYN were significantly higher in TRS patients than in FLR patients, indicating a greater activation of KP. Furthermore, the levels of quinolinic (NMDA receptor agonist) and kynurenic acid (NMDA negative allosteric modulator) showed a negative and a positive correlation with several dimensions and the overall symptomatology in the whole sample and in FLR, but not in TRS, suggesting a putative modulating effect of clozapine elicited through the NMDA receptors. Despite the cross-sectional design of the study that prevents us from demonstrating causation, these findings show a significant relationship among circulating KP biomarkers, psychopathology, and response to pharmacotherapy in SCZ. Therefore, plasma KP biomarkers should be further investigated for developing personalized medicine approaches in SCZ.


Assuntos
Clozapina , Esquizofrenia , Humanos , Cinurenina/metabolismo , Esquizofrenia Resistente ao Tratamento , Esquizofrenia/tratamento farmacológico , Clozapina/uso terapêutico , Estudos Transversais , Biomarcadores , Ácido Cinurênico , Ácido Quinolínico
16.
J Dual Diagn ; 20(2): 132-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38117676

RESUMO

The detrimental physical, mental, and socioeconomic effects of substance use disorders (SUDs) have been apparent to the medical community for decades. However, it has become increasingly urgent in recent years to develop novel pharmacotherapies to treat SUDs. Currently, practitioners typically rely on monotherapy. Monotherapy has been shown to be superior to no treatment at all for most substance classes. However, many randomized controlled trials (RCTs) have revealed that monotherapy leads to poorer outcomes when compared with combination treatment in all specialties of medicine. The results of RCTs suggest that monotherapy frequently fails since multiple dysregulated pathways, enzymes, neurotransmitters, and receptors are involved in the pathophysiology of SUDs. As such, research is urgently needed to determine how various neurobiological mechanisms can be targeted by novel combination treatments to create increasingly specific yet exceedingly comprehensive approaches to SUD treatment. This article aims to review the neurobiology that integrates many pathophysiologic mechanisms and discuss integrative pharmacology developments that may ultimately improve clinical outcomes for patients with SUDs. Many neurobiological mechanisms are known to be involved in SUDs including dopaminergic, nicotinic, N-methyl-D-aspartate (NMDA), and kynurenic acid (KYNA) mechanisms. Emerging evidence indicates that KYNA, a tryptophan metabolite, modulates all these major pathophysiologic mechanisms. Therefore, achieving KYNA homeostasis by harmonizing integrative pathophysiology and pharmacology could prove to be a better therapeutic approach for SUDs. We propose KYNA-NMDA-α7nAChRcentric pathophysiology, the "conductor of the orchestra," as a novel approach to treat many SUDs concurrently. KYNA-NMDA-α7nAChR pathophysiology may be the "command center" of neuropsychiatry. To date, extant RCTs have shown equivocal findings across comparison conditions, possibly because investigators targeted single pathophysiologic mechanisms, hit wrong targets in underlying pathophysiologic mechanisms, and tested inadequate monotherapy treatment. We provide examples of potential combination treatments that simultaneously target multiple pathophysiologic mechanisms in addition to KYNA. Kynurenine pathway metabolism demonstrates the greatest potential as a target for neuropsychiatric diseases. The investigational medications with the most evidence include memantine, galantamine, and N-acetylcysteine. Future RCTs are warranted with novel combination treatments for SUDs. Multicenter RCTs with integrative pharmacology offer a promising, potentially fruitful avenue to develop novel therapeutics for the treatment of SUDs.


Assuntos
N-Metilaspartato , Transtornos Relacionados ao Uso de Substâncias , Humanos , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Receptor Nicotínico de Acetilcolina alfa7 , Ácido Cinurênico/metabolismo , Ácido Cinurênico/farmacologia , Memantina , Estudos Multicêntricos como Assunto
17.
Artigo em Inglês | MEDLINE | ID: mdl-38147973

RESUMO

BACKGROUND: The immune-inflammatory response system (IRS) and kynurenine pathway (KP) have been implicated in the pathophysiology of schizophrenia. Studies have shown inflammation-related effects on KP metabolism in patients with schizophrenia. This study investigated the relationship between KP metabolites, IRS, and the compensatory immune-regulatory reflex system (CIRS) in patients with treatment-resistant schizophrenia (TRS). METHODS: Patients with (n = 53) and without TRS (n = 47), and healthy controls (HCs, n = 49) were enrolled. We quantified plasma levels of pro-inflammatory cytokines (interleukin [IL]-1ß, IL-2, IL-6, soluble(s)IL-6 receptor, IL-8, IL-12, IL-17, IL-18, interferon-γ, and tumor necrosis factor[TNF]-α) and anti-inflammatory cytokines (IL-1 receptor antagonist, IL-4, IL-10, tumor growth factor [TGF]-ß1, TGF-ß2, soluble (s) IL-2 receptor subunit α, sIL-2 receptor subunit ß, and sTNF-α receptor 1) and calculated the IRS/CIRS ratio. We also tested serum metabolites of the KP, including kynurenine (KYN), kynurenic acid (KYNA), and quinolinic acid (QUIN), along with the QUIN/KYNA ratio. RESULTS: Patients with TRS had significantly higher IRS/CIRS ratio than non-TRS patients (p = 0.002) and HCs (p = 0.007), and significantly lower KYN (p = 0.001) and KYNA (p = 0.01) levels than HCs. Binary logistic regression analysis revealed that a younger age at illness onset (odds ratio [OR] = 0.91, p = 0.02) and a higher IRS/CIRS ratio (OR = 1.22; p = 0.007) were risk factors for patients with TRS. After further adjusted for age of onset, the QUIN/KYNA ratio (ß = 0.97; p = 0.02) significantly moderated the relationship between IRS/CIRS and TRS, showing that in the higher QUIN/KYNA condition, higher IRS/CIRS ratio were significantly and more likely to be associated with patients with TRS (ß = 0.12, z = 3.19, p = 0.001), whereas in the low QUIN/KYNA condition, the association between IRS/CIRS ratio and TRS was weak and insignificant. CONCLUSIONS: The peripheral immune response was imbalanced in TRS and was preferentially directed towards the IRS compared to patients without TRS and healthy controls, which is likely to play a role in neurotoxicity. Additionally, peripheral KP activation was also imbalanced, as evidenced by significantly reduced KYN and KYNA levels in patients with TRS compared to healthy controls, but none of KP metabolisms were significantly difference in non-TRS patients compared to healthy controls. QUIN/KYNA ratio involving to the degree of activation of NMDA receptors, indicated the neurotoxic level of the KP activation. The interaction between IRS/CIRS and QUIN/KYNA ratio was significant in predicting TRS, and our findings suggest a potential role for the immune-kynurenine pathway in TRS pathogenesis.


Assuntos
Cinurenina , Esquizofrenia , Humanos , Cinurenina/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia Resistente ao Tratamento , Citocinas , Inflamação , Ácido Cinurênico
18.
J Hypertens ; 42(1): 70-78, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37889604

RESUMO

BACKGROUND: Myocardial ischemia causes the release of bradykinin, which stimulates cardiac afferents, causing sympathetic excitation and chest pain. Glutamatergic activation of the paraventricular hypothalamic nucleus (PVN) in the spontaneously hypertensive rat (SHR) drives elevated basal sympathetic activity. Thus, we tested the hypothesis that inactivation of the PVN attenuates the elevated reflex response to epicardial bradykinin in the SHR and that ionotropic PVN glutamate receptors mediate the elevated reflex. METHODS: We recorded the arterial pressure and renal sympathetic nerve activity (RSNA) response to epicardial bradykinin application in anesthetized SHR and Wistar Kyoto (WKY) rats before and after PVN microinjection of GABA A agonist muscimol or ionotropic glutamate receptor antagonist kynurenic acid. RESULTS: Muscimol significantly decreased the arterial pressure response to bradykinin from 180.4 ±â€Š5.8 to 119.5 ±â€Š6.9 mmHg in the SHR and from 111.8 ±â€Š7.0 to 84.2 ±â€Š8.3 mmHg in the WKY and the RSNA response from 186.2 ±â€Š7.1 to 142.7 ±â€Š7.3% of baseline in the SHR and from 201.0 ±â€Š11.5 to 160.2 ±â€Š9.3% of baseline in the WKY. Kynurenic acid significantly decreased the arterial pressure response in the SHR from 164.5 ±â€Š5.0 to 126.2 ±â€Š7.7 mmHg and the RSNA response from 189.9 ±â€Š13.7to 168.5 ±â€Š12.7% of baseline but had no effect in the WKY. CONCLUSION: These results suggest that tonic PVN activity is critical for the full manifestation of the CSAR in both the WKY and SHR. Glutamatergic PVN activity contributes to the augmented CSAR observed in the SHR.


Assuntos
Bradicinina , Núcleo Hipotalâmico Paraventricular , Ratos , Animais , Ratos Endogâmicos SHR , Bradicinina/farmacologia , Ratos Endogâmicos WKY , Ácido Cinurênico/farmacologia , Muscimol/farmacologia , Reflexo/fisiologia , Sistema Nervoso Simpático , Pressão Sanguínea
20.
Genes Dev ; 37(21-24): 998-1016, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38092521

RESUMO

Reductions in brain kynurenic acid levels, a neuroinhibitory metabolite, improve cognitive function in diverse organisms. Thus, modulation of kynurenic acid levels is thought to have therapeutic potential in a range of brain disorders. Here we report that the steroid 5-androstene 3ß, 17ß-diol (ADIOL) reduces kynurenic acid levels and promotes associative learning in Caenorhabditis elegans We identify the molecular mechanisms through which ADIOL links peripheral metabolic pathways to neural mechanisms of learning capacity. Moreover, we show that in aged animals, which normally experience rapid cognitive decline, ADIOL improves learning capacity. The molecular mechanisms that underlie the biosynthesis of ADIOL as well as those through which it promotes kynurenic acid reduction are conserved in mammals. Thus, rather than a minor intermediate in the production of sex steroids, ADIOL is an endogenous hormone that potently regulates learning capacity by causing reductions in neural kynurenic acid levels.


Assuntos
Ácido Cinurênico , Esteroides , Animais , Ácido Cinurênico/farmacologia , Hormônios , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...